Home
Class 12
MATHS
The distance from the origin to he plane...

The distance from the origin to he plane `vec(r)(2hat(i)-hat(j)+5hat(k))=7` is ……………

A

`7/sqrt30`

B

`sqrt30/7`

C

`30/7`

D

`7/30`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 6

    FULL MARKS|Exercise PART -II|10 Videos
  • SAMPLE PAPER - 6

    FULL MARKS|Exercise PART -III|10 Videos
  • SAMPLE PAPER - 5

    FULL MARKS|Exercise PART -IV|13 Videos
  • SAMPLE PAPER -04

    FULL MARKS|Exercise PART -I|1 Videos

Similar Questions

Explore conceptually related problems

For the plane vec(r).(2hat(i)+3hat(j)+5hat(k))=3

The length of the bot^(r) from the origin to plane vec(r).(3hat(i)+4hat(j)+12hat(k))=26 is …………..

The distance of a point (2,5,-3) from the plane vec r.(6 hat i-3 hat j+2 hat k)=4 is,

Find the non-parametric form of vector equation, and Cartesian equations of the plane vec(r)=(6hat(i)-hat(j)+hat(k))+s(-hat(i)+2hat(j)+hatk)+t(-5hat(j)-4hat(j)-5hat(k))

Find the parametric form of vector equation, and Cartesian equations of the plane containing the line vec(r)=(hat(i)-hat(j)+3hat(k))+t(2hat(i)-hat(j)+4hat(k))" and perpendicular to plane "vec(r)*(hat(i)+2hat(j)+hat(k))=8.

The coordinates of the point where the line vec(r)=(6i-j-3k)+t(-i+4k)" meets the plane "vec(r)*(hat(i)+hat(j)-hat(k))=3 are

Find the angle between the line vec(r)=(2hat(i)-hat(j)+hat(k))+t(6hat(i)+2hat(j)-2hat(k))" and the plane "vec(r)*(6hat(i)+3hat(j)+2hat(k))=8

A unit vector parallel to the intersection of the planes vec rdot( hat i- hat j+ hat k)=5a n d vec rdot(2 hat i+ hat j-3 hat k)=4 a. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) b. (-2 hat i+5 hat j-3 hat k)/(sqrt(38)) c. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) d. (-2 hat i-5 hat j-3 hat k)/(sqrt(38))

Find the equation the plane which contain the line of intersection of the planes vec rdot( hat i+2 hat j+3 hat k)-4=0a n d vec rdot(2 hat i+ hat j- hat k)+5=0 and which is perpendicular to the plane vec r(5 hat i+3 hat j-6 hat k)+8=0 .