Home
Class 12
MATHS
If f(x,y) = 1/(sqrt(x^2+y^2)) then show...

If f(x,y) = `1/(sqrt(x^2+y^2))` then show that `x(delf)/(delx)+y(delf)/(dely) = -f`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 6

    FULL MARKS|Exercise PART -III|10 Videos
  • SAMPLE PAPER - 5

    FULL MARKS|Exercise PART -IV|13 Videos
  • SAMPLE PAPER -04

    FULL MARKS|Exercise PART -I|1 Videos

Similar Questions

Explore conceptually related problems

If f=x/(x^(2) + y^(2)) , then show that x (del f)/(del x) + y(del f)/(del y) =-f .

If u =sqrt(x ^(4) +y ^(4)) show that x (delu)/(delx) + y ( del u)/(dely) =2u.

If f = (x+y)/(sqrt(x-y)) then x (delf)/(delx) +y (delf)/(dely) is :

If f(x,y) =2x^(3) - 11x^(2)y + 3y^(3) , prove that x(del f)/(del x) + y(del f)/(del y)=3f .

If u=1/(sqrt(x^2+y^2)) , then x(delu)/(delx)+y(delu)/(dely) is equal to ..........

If u=sin^(-1)((x+y)/(sqrtx+sqrty)) show that x(delu)/(delx)+y(delu)/(dely)=1/2 tan u.

If u =tan^(-1)((x ^(4) +y ^(4))/(x ^(2)-y ^(2))) show that x (delu)/(delx) + y(del u)/(dely) = sin 2u.

If u = sin ^(-1) ((x ^(3) + y ^3)/(x-y)) show that x (del u)/(delx) + y (del u )/(del y) = 2 tan u.

If u=log((x^2+y^2)/(xy)) then x(delu)/(delx)+y(delu)/(dely) is ..........

If u = cos ^(-1) ((x)/(y)) prove that x (del u)/(delx) + y (del u)/(dely)=0.