Home
Class 12
MATHS
Prove that : cos [ tan^(-1) { sin (...

Prove that : ` cos [ tan^(-1) { sin (cot^(-1) x)}]= sqrt((x^2 +1)/(x^2 +2))`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER- 10 (UNSOLVED)

    FULL MARKS|Exercise (PART-III) III. Answer any seven questions. Question No. 40 is compulsory.|10 Videos
  • SAMPLE PAPER 03

    FULL MARKS|Exercise PART IV|14 Videos
  • SAMPLE PAPER-09 (UNSOLVED)

    FULL MARKS|Exercise PART-IV (IV. Answer all the questions. )|15 Videos

Similar Questions

Explore conceptually related problems

Prove that sin [2 tan^(-1) {sqrt((1 -x)/(1 + x))}] = sqrt(1 - x^(2))

Prove that sin (cot^(-1) (tan (cos^(-1) x))) = x, x gt 0

solve for x : tan (cos^(-1) x ) = sin (cot^(-1) ""1/2)

Prove that , tan^(-1)(cotx)+cot^(-1) (tan x) = pi-2x

Show that : tan (cos^(-1)x) = (sqrt(1-x^(2)))/x

Solve : cos(tan^(-1)x)=sin(cot^(-1)""(3)/(4))

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

Prove that 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x)=tan^(-1)x(x!=0)dot

Prove that sin^(6)x + cos^(6)x = 1 - 3 sin^(2) x cos^(2)x .