Home
Class 12
MATHS
If f (x,y) is homogeneous function of de...

If `f (x,y)` is homogeneous function of degree 5 then `x (del f)/(delx) +y (del f)/( del y)=`

A

f

B

nf

C

`n(n-1)`

D

`n(n+1)f`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER -15 ( UNSOLVED)

    FULL MARKS|Exercise PART- II|10 Videos
  • SAMPLE PAPER -15 ( UNSOLVED)

    FULL MARKS|Exercise PART -III|9 Videos
  • SAMPLE PAPER -13 (UNSOLVED)

    FULL MARKS|Exercise PART-IV IV. Answer all the questions.|9 Videos
  • SAMPLE PAPER 03

    FULL MARKS|Exercise PART IV|14 Videos

Similar Questions

Explore conceptually related problems

If u is a homogenous function of x and y of degree n, then x(del^(2)u)/(del x^(2)) + y(del^(2)u)/(del x del y) = __________ (del u)/(del x) .

If u=f(y/x) , then x(del u)/(del x) + y(del u)/(del y) =_________

If u=(x-y)^(2) , then (del u)/(del x) + (del u)/(del y) is

If f = (x+y)/(sqrt(x-y)) then x (delf)/(delx) +y (delf)/(dely) is :

If f(x,y) =2x^(3) - 11x^(2)y + 3y^(3) , prove that x(del f)/(del x) + y(del f)/(del y)=3f .

If u = cos ^(-1) ((x)/(y)) prove that x (del u)/(delx) + y (del u)/(dely)=0.

If v(x,y) = log((x^(2) +y^(2))/(x+y)) , prove that x(del v)/(del x) + y(del v)/(del y)=1 .

If f=x/(x^(2) + y^(2)) , then show that x (del f)/(del x) + y(del f)/(del y) =-f .

A function f (x,y) is said to be harmonic if (del^(2)f)/(del x ^(2)) + (del^(2)f)/(dely^(2)) =