Home
Class 12
MATHS
If the volume of the parallelpiped with ...

If the volume of the parallelpiped with `vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(c)xxvec(a)` as coterminous edges is 8 cubic units, then the volume of the parallelepiped with `(vec(a)xxvec(b))xx(vec(b)xxvec(c)),(vec(b)xxvec(c))xx(vec(c)xxvec(a))and(vec(c)xxvec(a))xx(vec(a)xxvec(b))` as coterminous edges is,

A

8 cubic units

B

512 cubic units

C

64 cubic units

D

24 cubic units

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 16

    FULL MARKS|Exercise PART -II|10 Videos
  • SAMPLE PAPER - 16

    FULL MARKS|Exercise PART - III|10 Videos
  • SAMPLE PAPER - 14 (UNSOLVED)

    FULL MARKS|Exercise PART-IV IV. Answer all the questions.|14 Videos
  • SAMPLE PAPER - 17

    FULL MARKS|Exercise PART - IV|7 Videos

Similar Questions

Explore conceptually related problems

If vec(d)=vec(a)xx(vec(b)xxvec(c))+vec(b)xx(vec(c)xxvec(a))+vec(c)xx(vec(a)xxvec(b))," then "

Prove that [vec(a)+vec(b)+vec(c),vec(b)+vec(c),vec(c)]=[vec(a)vec(b)vec(c)]

prove that [vec(a)-vec(b),vec(b)-vec(c)vec(c)-vec(a)]=0

Prove that (vec(a). (vec(b) xx vec(c)) vec(a) = (vec(a) xx vec(b)) xx (vec(a) xx (c)) .

For any three vectors vec(a),vec(b)andvec(c),(vec(a)+vec(b)).(vec(b)+vec(c))xx(vec(c)+vec(a)) is

If vec(a),vec(b),vec(c) are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of (vec(a)+vec(b))*(vec(b)xxvec(c))+(vec(b)+vec(c))*(vec(c)xxvec(a))+(vec(c)+vec(a))*(vec(a)xxvec(b))

If vec(a)+vec(b)+vec(c)=0," then show that "vec(a)xxvec(b)=vec(b)xxvec(c)=vec(c)xxvec(a)

If vec(d)=lamda(vec(a)xxvec(b))+mu(vec(b)xxvec(c))+omega(vec(c)xxvec(a))and|vec(c)xxvec(a)|=(1)/(8)" then "lamda+mu+omega is …………..