Home
Class 12
MATHS
If vec(d)=vec(a)xx(vec(b)xxvec(c))+vec(b...

If `vec(d)=vec(a)xx(vec(b)xxvec(c))+vec(b)xx(vec(c)xxvec(a))+vec(c)xx(vec(a)xxvec(b))," then "`

A

`vec u` is a unit vector

B

`vecu = vec a + vec b + vec c`

C

`vec u = vec0`

D

`vec u ne vec0`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 16

    FULL MARKS|Exercise PART -II|10 Videos
  • SAMPLE PAPER - 16

    FULL MARKS|Exercise PART - III|10 Videos
  • SAMPLE PAPER - 14 (UNSOLVED)

    FULL MARKS|Exercise PART-IV IV. Answer all the questions.|14 Videos
  • SAMPLE PAPER - 17

    FULL MARKS|Exercise PART - IV|7 Videos

Similar Questions

Explore conceptually related problems

If the volume of the parallelpiped with vec(a)xxvec(b),vec(b)xxvec(c),vec(c)xxvec(c)xxvec(a) as coterminous edges is 8 cubic units, then the volume of the parallelepiped with (vec(a)xxvec(b))xx(vec(b)xxvec(c)),(vec(b)xxvec(c))xx(vec(c)xxvec(a))and(vec(c)xxvec(a))xx(vec(a)xxvec(b)) as coterminous edges is,

If vec(a),vec(b),vec(c) are three non-coplanar vectors represented by concurrent edges of a parallelepiped of volume 4 cubic units, find the value of (vec(a)+vec(b))*(vec(b)xxvec(c))+(vec(b)+vec(c))*(vec(c)xxvec(a))+(vec(c)+vec(a))*(vec(a)xxvec(b))

If vec(d)=lamda(vec(a)xxvec(b))+mu(vec(b)xxvec(c))+omega(vec(c)xxvec(a))and|vec(c)xxvec(a)|=(1)/(8)" then "lamda+mu+omega is …………..

If vec(a),vec(b),vec(c) are the non-coplanar vectors, then (vec(a).vec(b)xxvec(c))/(vec(c)xxvec(a).vec(b))+(vec(b).vec(a)xxvec(c))/(vec(c).vec(a)xxvec(b))= ……………

Prove that (vec(a). (vec(b) xx vec(c)) vec(a) = (vec(a) xx vec(b)) xx (vec(a) xx (c)) .

If [vec(a),vec(b),vec(c)]=1, then the value of (vec(a)*(vec(b)xxvec(c)))/((vec(c)xxvec(a))*vec(a))+(vec(b)*(vec(c)xxvec(a)))/((vec(a)xxvec(b))*vec(c))+(vec(c)(vec(a)xxvec(b)))/((vec(c)xxvec(b))*vec(a)) is

If vec(a)xx(vec(b)xxvec(c))=(vec(a)xxvec(b))xxvec(c)," where "vec(a),vec(b)vec(c) are any three vectors such that vec(b)*vec(c)ne0andvec(a)*vec(b)ne0," then "vec(a)andvec(c)" are "

Let vec(a),vec(b)andvec(c) be three non-coplanar vectors and let vec(p),vec(q),vec(r) be the vectors defined by the relations vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]),vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]),vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)])" Then the value of "(vec(a)+vec(b))*vec(p)+(vec(b)+vec(c))*vec(q)+(vec(c)+vec(a))*vec(r)=

Prove that [vec(a)+vec(b)+vec(c),vec(b)+vec(c),vec(c)]=[vec(a)vec(b)vec(c)]