Home
Class 12
MATHS
Let vecu, vecv and vecw be vector such t...

Let `vecu, vecv and vecw` be vector such that `vecu+vecv+vecw=vec0`. If `|vecu|=3, |vecv|=4 and |vecw|=5` then `vecu.vecv+vecv.vecw+vecw.vecu` is ………………….. .

A

25

B

`-25`

C

5

D

`sqrt5`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 18 (UNSOLVED)

    FULL MARKS|Exercise PART - II (II. Answer any seven questions. Questions No. 30 is compulsory.)|8 Videos
  • SAMPLE PAPER - 18 (UNSOLVED)

    FULL MARKS|Exercise PART - III (III. Answer any seven questions. Questions No. 40 is compulsory.)|8 Videos
  • SAMPLE PAPER - 17

    FULL MARKS|Exercise PART - IV|7 Videos
  • SAMPLE PAPER - 19 (UNSOLVED)

    FULL MARKS|Exercise PART - IV (IV. Answer all the questions.)|14 Videos

Similar Questions

Explore conceptually related problems

Let vec u , vec va n d vec w be vectors such that vec u+ vec v+ vec w=0. If | vec u|=3,| vec v|=4a n d| vec w|=5, then vec udot vec v+ vec vdot vec w+ vec wdot vec u is a. 47 b. -25 c. 0 d. 25

Let vec(u),vec(v),vec(w)" be vectors such that "vec(u)+vec(v)+vec(w)=vec(0)." If abvec(u)=3,absvec(v)=4,absvec(w)=5" then "vec(u).vec(v)+vec(v).vec(w)+vec(w).vec(u) is ……………

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let vecu, vecv and vecw be three unit vectors such that vecu + vecv + vecw = veca, vecuxx (vecv xx vecw)= vecb, (vecu xx vecv) xx vecw= vecc, vec a.vecu=3//2, veca.vecv=7//4 and |veca|=2 Vector vecu is

Let veca and vecb be two non-collinear unit vectors. If vecu=veca-(veca.vecb)vecb and vecv=vecaxxvecb , then |vecv| is

Let vec a , vec b ,a n d vec c be vectors forming right-hand traid. Let vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c]),a n d vec r=( vec axx vec b)/([ vec a vec b vec c]),dot If xuuR^+, then a. x[ vec a vec b vec c]+([ vec p vec q vec r])/x b. x^4[ vec a vec b vec c]^2+([ vec p vec q vec r])/(x^2) has least value =(3/2)^(2//3) c. [ vec p vec q vec r]>0 d. none of these

Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+vecwxxvecu=vecv , then prove that |(vecuxxvecv).vecw|le1/2 and that the equality holds if and only if vecu is perpendicular to vecv .

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

Let vec a, vec b and vec c be the three vectors such that |veca| = 3 , |vec b| = 4, |vec c| = 5 , and each one of them being perpendicular to the sum of the other two . Find |vec a + vec b + vec c| .