Home
Class 12
MATHS
If f(x) = int(0)^(x) t cos t dt, then (d...

If `f(x) = int_(0)^(x) t cos t dt`, then `(df)/(dx)`

A

`cosx-x sin x`

B

`sinx +x cos x`

C

`xcosx`

D

`xsinx`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER - 18 (UNSOLVED)

    FULL MARKS|Exercise PART - II (II. Answer any seven questions. Questions No. 30 is compulsory.)|8 Videos
  • SAMPLE PAPER - 18 (UNSOLVED)

    FULL MARKS|Exercise PART - III (III. Answer any seven questions. Questions No. 40 is compulsory.)|8 Videos
  • SAMPLE PAPER - 17

    FULL MARKS|Exercise PART - IV|7 Videos
  • SAMPLE PAPER - 19 (UNSOLVED)

    FULL MARKS|Exercise PART - IV (IV. Answer all the questions.)|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)t sintdt , then f'(x)= . . . . . .

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

If g(x)=int_(0)^(x)cos^(4)t dt , then prove that g(x+pi)=g(x)+g(pi) .

If f(x)=int_(x^2)^(x^2+1)e^-t^2dt , then f(x) increases in (0,2) (b) no value of x (0,oo) (d) (-oo,0)

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If int_0^y cos t^2\ dt = int_0^(x^2)\ sint/t \ dt , then dy/dx is equal to