Home
Class 12
MATHS
If f(x) = log([x-1])(|x|)/(x),where [.]...

If `f(x) = log_([x-1])(|x|)/(x)`,where [.] denotes the greatest integer function,then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

If [log_(2)((x)/([x]))]>=0, where [.] denote the greatest integer function,then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

f(x)=log_([x-1])sin x, where [.1 denotes the greatest integer.

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in: