Home
Class 12
MATHS
In an acute triangle A B C if sides a , ...

In an acute triangle `A B C` if sides `a , b` are constants and the base angles `Aa n dB` vary, then show that `(d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))`

Promotional Banner

Similar Questions

Explore conceptually related problems

In an acute triangle ABC if sides a,b are constants and the base angles A and B vary, then show that (dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABC if the sides a, b be constant and the base angles A and B vary, then show that , (dA)/sqrt(a^2-b^2sin^2A) =(dB)/sqrt(b^2-a^2 sin^2B)

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In the triangle ABC, if the sides a,b reamain constant but the base angles A and B very, then show that, (dA)/(sqrt(a^(2) - b^(2) sin^(2)A)) = (dB)/(sqrt(b^(2) - a^(2) sin^(2)B)).

If a : b = c : d , then prove that (a + c) : (b + d) = sqrt(a^(2) - c^(2)) : sqrt(b^(2) - d^(2))

Find acute angles Aa n dB , if sin(A+2B)=(sqrt(3))/2a n dcos(A+4B)=0,A > Bdot

If (a)/(b) = (c)/(d) , show that : (a + b) : (c + d) = sqrt(a^(2) + b^(2)) : sqrt(c^(2) + d^(2))