Home
Class 10
MATHS
The length of the hypotenuse of an is...

The length of the hypotenuse of an isosceles right triangle whose one side is `4sqrt(2)` cm is `12 c m` (b) `8c m` (c) `8sqrt(2)c m` (d) `12sqrt(2)c m`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the hypotenuses of an isosceles right triangle whose side is 8sqrt2 cm.

The length of the hypotenuse of an isosceles right triangle whose one side is 4sqrt(2)cm is 12cm(b)8cm(c)8sqrt(2)cm(d)12sqrt(2)cm

The area of a right isosceles triangle whose hypotenuse is 16sqrt(2)\ c m is 125 c m^2 (b) 158 c m^2 128 c m^2 (d) 144 c m^2

The area of a right isosceles triangle whose hypotenuse is 6sqrt(2)\ c m is (a) 12 c m^2 (b) 15 c m^2 12 c m^2 (d) 18 c m^2

The length of the hypotenuse of an isosceles right angled triangle is 8sqrt2 cm . Find the length of the other two sides.

A B C is an isosceles triangle in which /_C=90o . If A C=6c m , then A B= 6sqrt(2)c m (b) 6c m (c) 2sqrt(6)c m (d) 4sqrt(2)c m

The altitude of an equilateral triangle of side 2sqrt(3) c m is 1/2c m (b) (sqrt(3))/4c m (c) (sqrt(3))/2c m (d) 3 c m

If the area of an isosceles right triangle is 8cm, what is the perimeter of the triangle? 8+sqrt(2)cm^(2)(b)8+4sqrt(2)cm^(2)4+8sqrt(2)cm^(2) (d) 12sqrt(2)cm^(2)

If the length of each side of an equilateral triangle of area 4sqrt(3)\ c m^2,\ is (a) 4\ c m (b) 4/(sqrt(3))c m\ (c) (sqrt(3))/4\ c m (d) 3\ c m

Each side of an equilateral triangle is 8 cm. Its area is (a) 16sqrt(3)\ c m^2 (b) 32sqrt(3)\ c m^2 (c) 24sqrt(3)\ c m^2 (d) 8sqrt(3)\ c m^2