Home
Class 12
MATHS
In a triangle sin^(4)A + sin^(4)B + sin^...

In a triangle `sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B`, then its angle A is equal to-

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If in a triangle ABC,sin^(4)A+sin^(4)B+sin^(4)C=sin^(2)B sin^(2)C+2sin^(2)C sin^(2)A+2sin^(2)A sin^(2)B ,show that,one of the angles of the triangle is 30^(@) or 150^(@)

If sin ^(2) A+ sin ^(2) B + sin ^(2) C then angle C =

If sin^(2)B+ sin^(2)C = sin^(2)A , then the triangle ABC is-

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is