Home
Class 12
MATHS
If A=[2-1-1 2] and I is the identity mat...

If `A=[2-1-1 2]` and I is the identity matrix of order 2, then show that `A^2=4a-3Idot` Hence find `A^(-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2,-1-1,2]] and I is the identity matrix of order 2, then show that A^(2)=4a-3I Hence find A^(-1).

If A=[[2,-1],[-1, 2]] and I is the identity matrix of order 2, then show that A^2=4A-3I Hence find A^(-1) .

If A=([2,-1],[1,3]) then show that A^2-5A+7I_2=0 hence find A^(-1)

If A=[[2,5],[1,3]],B=[[4,-2],[-1,3]] and I is the identity matrix of the same order and A^T is transpose of matrix A then find A^(T)B+BI

For the matrix A=[[2,31,2]] show that A^(2)-4A+I=0 Hence find A^(-1)

For the matrix A=[{:(2,3),(1,2):}] , show that A^2-4A+I_2=0 . Hence, find A^(-1)

If A=({:(2,-1),(-1,2):}) " and " A^(2)-4A+3I=0 where I is the unit matrix of order 2, then find A^(-1) .

For the matrix A=[[3 ,1],[ 7, 5]], find x and y sot that A^2+x I+y Adot=0 Hence, Find A^(-1)dot

If Matrix A= [[2,-1],[3,2]] , then show that A^2-4A+7I=0 and hence find A^-1 from this equation.