Home
Class 11
MATHS
The equation of the circle passing throu...

The equation of the circle passing through the point of intersection of the circles `x^2+y^2-4x-2y=8` and `x^2+y^2-2x-4y=8` and the point `(-1,4)` is (a) `x^2+y^2+4x+4y-8=0` (b)`x^2+y^2-3x+4y+8=0` (c)`x^2+y^2+x+y=0` (d)`x^2+y^2-3x-3y-8=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the circle passing through the point of intersection of the circles x^2+y^2-4x-2y=8 and x^2+y^2-2x-4y=8 and the point (-1,4) is x^2+y^2+4x+4y-8=0 x^2+y^2-3x+4y+8=0 x^2+y^2+x+y=0 x^2+y^2-3x-3y-8=0

The equation of the circle passing through the point of intersection of the circles x^2+y^2-4x-2y=8 and x^2+y^2-2x-4y=8 and the point (-1,4) is x^2+y^2+4x+4y-8=0 x^2+y^2-3x+4y+8=0 x^2+y^2+x+y=0 x^2+y^2-3x-3y-8=0

The equation of the circle passing through the point of intersection of the circles x^(2)+y^(2)-4x-2y=8 and x^(2)+y^(2)-2x-4y=8 and (-1,4) is (a)x^(2)+y^(2)+4x+4y-8=0(b)x^(2)+y^(2)-3x+4y+8=0(c)x^(2)+y^(2)+x+y=0(d)x^(2)+y^(2)-3x-3y-8=0

The equation of the circle passing through the points of intersection of the circle x^(2)+y^(2)-2x+4y-20=0 , the line 4x-3y-10 =0 and the point (3, 1) is

The point of tangency of the circles x^(2)+y^(2)-2x-4y=0 and x^(2)+y^(2)-8y-4=0 is

The equation of circle through the intersection of circles: x^2+y^2-3x-6y+8=0 and x^2+y^2-2x-4y+4=0 and touching the line x+2y=5 is :