Home
Class 12
MATHS
If x=sint" and "y=sin mt" then prove tha...

If `x=sint" and "y=sin mt" then prove that "sqrt(1-x^2)(d^2y)/(dx^2)-xdy/dx+m^2y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint ,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If y=(sin^-1x)^2 , then show that (1-x^2)(d^2y)/(dx^2)-xdy/dx=2

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If y=sin(m sin^-1x) , Hence prove that (1-x^2)(d^2y)/dx^2-xdy/dx+m^2y=0 .

(i) If x=sin t , y=sin 2t then prove that (1-x^2)d^2y/dx^2-xdy/dx+4y=0 . If y=gof (x) then find dy/dx.