Home
Class 12
MATHS
If S is circumcentre, O is orthocentre o...

If S is circumcentre, O is orthocentre of `DeltaABC`, then `vec(SA)+vec(SB)+vec(SC)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If S is the circumcentre, O is the orthocentre of Delta ABC then vec(O)A + vec(O)B + vec(O)C =

If S is the circumcentre, O is the orthocentre of DeltaABC, then bar(SA) + bar(SB)+bar(SC) equals

If S is the circumcentre, G the centroid, O the orthocentre of Delta ABC, then vec(S)A + vec(S)B + vec(S)C =

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If S is the circumcentre,O is the orthocentre of Delta ABC, then bar(SA)+( O is the orthocentre )/(SC) equals

If O is the circumcentre and P the orthocentre ( of Delta ABC, prove that )/(OA)+vec OB+vec OC=vec OP

Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then vec(SA) + vec(SB)+vec(SC)=

Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then vec(SA) + vec(SB)+vec(SC)=