Home
Class 11
MATHS
[" It is found that "|vec A+vec B|=|vec ...

[" It is found that "|vec A+vec B|=|vec A|" .This necessarily implies "],[[" (a) "vec B=0," (b) "vec A,vec B" are antiparallel "],[" (c) "vec A,vec B" are perpendicular "," (d) "vec A.vec B<=0]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec a,vec b, and vec c are vectors such that |vec a|=3,|vec b|=4 and |vec c|=5, and (vec a+vec b) is perpendicular to vec c,(vec b+vec c) is perpendicular to vec a and (vec c+vec a) is perpendicular to vec b. Then find the value of |vec a+vec b+vec c|

For the vector vec(a) and vec (b) if |vec(a) + vec(b)| = |vec(a) - vec(b)| , show that vec(a) and vec (b) are perpendicular

If (vec a-vec b) * (vec a + vec b) = 0, then (a) vec a and vec b are perpendicular (b) vec a and vec b are parallel (c) | vec a | = | vec b | (d) vec a = 2vec b

[vec a + vec b, vec b + vec c, vec c + vec a] = 2 [vec a, vec b, vec c]

[vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

Show by a numerical example that vec axx vec b= vec axx vec c does not imply vec b= vec c dot

If ( vec axx vec b)xx( vec cxx vec d)dot( vec axx vec d)=0 , then which of the following may be true? vec a , vec b , vec ca n d vec d are necessarily coplanar b. vec a lies in the plane of vec ca n d vec d c. vec b lies in the plane of vec aa n d vec d d. vec c lies in the plane of vec aa n d vec d

If ( vec axx vec b)xx( vec cxx vec d) . ( vec axx vec d)=0 , then which of the following may be true? (a) vec a , vec b , vec ca n d vec d are necessarily coplanar (b) vec a lies in the plane of vec ca n d vec d (c) vec b lies in the plane of vec aa n d vec d (d) vec c lies in the plane of vec aa n d vec d