Home
Class 11
MATHS
" Prove that: "lim(x rarr2)(3^(x)+3^(3-x...

" Prove that: "lim_(x rarr2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2))=-(4)/(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^((x)/(2))) is

lim_(x rarr0)(2x+3)=3

Prove that : lim_(x rarr0)(3^(x)+3^(-x)-2)/(x^(2))=(log_(e)3)^(2)

Prove that : lim_(x rarr0)(3^(x)+3^(-x)-2)/(x^(2))=(log_(e)3)^(2)

lim_(x rarr2)(x^(3)+x^(2)-12)/(x^(3)-x^(2)-x-2)

Prove that : lim_(x rarr0)((3^(x)+3^(-x)-2 ))/(x^(2))=(log_(e)3)^(2)

Evaluate the following limit : lim_(x rarr 2)(3^x+3^(3-x) - 12)/(3^(3-x)- 3^(x/2)) .

Evaluate lim_(x rarr 2) (3^(x)+3^(3 - x)-12)/(3^((-x)/(2))-3^(1-x))

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

lim_(x rarr0)(3x^(3)+2x^(2)-x)/(x^(2)-x)