Home
Class 12
MATHS
Let (a1,a2,a3....a4) be a permutation o...

Let `(a_1,a_2,a_3....a_4)` be a permutation of `(1,2,3....n)` for which `a_1 > a_2 .a_3 >.........> a_ (a/2) and a_(n/2=1) < a_(x/2 12 )<.....a_x` for n as an even positive integer Also `a_1 > a_2 >a_3..........>a_((x-2)/2` and `a_((n-1)/2 <.... < a_2`for n as positive integers. Let the total number of permutation of n be `p(n).` if `200 < p(n) < 5000.` then values of n is /are

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(n) = n(n!) , then what is a_1 +a_2 +a_3 +......+ a_(10) equal to ?

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

If a_1+a_2+a_3+......+a_n=1 AA a_1 > 0, i=1,2,3,......,n, then find the maximum value of a_1 a_2 a_3 a_4 a_5......a_n.

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

Let a_1,a_2,a_3,...... be an A.P. such that [a_1+a_2+......+a_p]/[a_1+a_2+a_3+......+a_q]=p^3/q^3 ; p!=q .Then a_6/a_[21] is equal to:

If a_1, a_2, a_3..... a_n in R^+ and a_1.a_2.a_3.........a_n = 1, then minimum value of (1+a_1 + a_1^2) (1 + a_2 + a_2^2)(1 + a_3 + a_3^2)........(1+ a_n + a_n^2) is equal to :-

Let the sequence a_1 , a_2 , a_3 ......... a_n form an A.P. then a_1^2 - a_2^2 + a_3^2 - a_4^2 +.....+ a_(2n-1)^2 - a_(2n)^2 is equal to:- (1) n/(2n-1)(a_1^2-a_(2n)^2) (2) (2n)/(n-1)(a_(2n)^2-a_1^2) (3) n/(n+1)(a_1^2+a_(2n)^2) (4)none of these