Home
Class 13
MATHS
[" 7.If the number of terms in the expan...

[" 7.If the number of terms in the expansion of "(1-(2)/(x)+(4)/(x^(2)))^(n),x!=0," is "28," then the sum of the coefficients of "],[[" all the terms in this expansion,is "," [JEE(Main) "2016,(4,-1),120]],[(1)2187,(2)243,(3)729,(4)64]]

Promotional Banner

Similar Questions

Explore conceptually related problems

IF the number of terms in the expansion of (1-(2)/(x)+(4)/(x^(2)))^(n),xne0 is 28 ,then the sum of the coefficients of all the terms in this expansion is

If the number of terms in the expansion of (1-(2)/(x)+(4)/(x^2))^n, x ne 0 is 28, then the sum of the coefficients of all the terms in this expansion, is

If the number of terms in the expansion of (1-(2)/(x)+(4)/(x^(2)))^(n),x!=0, is 28, then the sum of the coefficients of all the terms in this expansion,is : (1)64 (2) 2187 (3) 243 (4) 729

If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, is 28, then the sum of the coefficients of all the terms in this expansion, is : (1) 64 (2) 2187 (3) 243 (4) 729

If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, is 28, then the sum of the coefficients of all the terms in this expansion, is : (1) 64 (2) 2187 (3) 243 (4) 729

If the number of terms in the expansion of (1-2/x+4/(x^2))^n , x!=0, is 28, then the sum of the coefficients of all the terms in this expansion, is : (1) 64 (2) 2187 (3) 243 (4) 729

If the number of terms in the expansion of (1-2/x+4/(x^(2)))^n x ne 0 , is 28 , then the sum of coefficient of all the terms in this expansion, is

Find the number of terms in the expansion of (1-2x+x^(2))^(n) .