Home
Class 12
MATHS
Let vectors vec a , vec b , vec c ,a n ...

Let vectors ` vec a , vec b , vec c ,a n d vec d` be such that `( vec axx vec b)xx( vec cxx vec d)=0.` Let `P_1a n dP_2` be planes determined by the pair of vectors ` vec a , vec b ,a n d vec c , vec d ,` respectively. Then the angle between `P_1a n dP_2` is a.`0` b. `pi//4` c. `pi//3` d. `pi//2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the vector vec a,vec b,vec c,vec c,vec d be such that (vec a xxvec b)xx(vec c xxvec d)=vec 0. Let P_(1), and P_(2), be planes determined by the vectors vec a,vec b and vec c,vec d respectively.Then the angle between P_(1), and P_(2), is

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If three unit vectors vec a , vec b ,a n d vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec aa n d vec bdot

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d)dot (vec b- vec c)!=0,

If vec aa n d vec b are two vectors, such that vec adot vec b<0a n d| vec adot vec b|=| vec axx vec b|, then the angle between vectors vec aa n d vec b is pi b. 7pi//4 c. pi//4 d. 3pi//4

If vec a and vec b are two vectors, such that vec a.vec b <0 and | vec a.vec b|=| vec axx vec b|, then the angle between vectors vec a and vec b is a. pi b. 7pi//4 c. pi//4 d. 3pi//4

If vec a , vec b ,a n d vec c are such that [ vec a vec b vec c]=1, vec c=lambda vec axx vec b , angle, between vec aa n d vec b is (2pi)/3,| vec a|=sqrt(2),| vec b|=sqrt(3)a n d| vec c|=1/(sqrt(3)) , then the angel between vec aa n d vec b is pi/6 b. pi/4 c. pi/3 d. pi/2