Home
Class 11
MATHS
" h) "y^(x)=x^(y)...

" h) "y^(x)=x^(y)

Promotional Banner

Similar Questions

Explore conceptually related problems

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) f(x)/f(y) (D) none of these

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) f(x)/f(y) (D) none of these

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) f(x)/f(y) (D) none of these

Let y=f(x),y=g(x),y=h(x) be three invertible functions defined from R rarr R Then y=f(x)+g(x)+h(x) is

If x ylog(x+y)=1,p rov e \ t h a t \ (dy)/(dx)=-(y(x^2y+x+y))/(x(x y^2+x+y))dot

If (sin"x")^y=x+y ,p rov et h a t(dy)/(dx)=(1-(x+y)ycotx)/((x+y)logsinx-1)

If y=cos^(-1)(cosx),t h e n(dy)/(dx) is equal to x/y (b) y/(x^2) (x^2-y^2)/(x^2+y^2) (d) y/x

If H be the harmonic mean between x and y, then show that (H+x)/(H-x)+(H+y)/(H-y)=2