Home
Class 12
MATHS
If f is an integrable function such that...

If `f` is an integrable function such that `f(2a-x)=f(x),` then prove that `int_0^(2a)f(x)dx=2int_0^af(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

Prove that: int_0^(2a)f(x)dx=int_0^(2a)f(2a-x)dxdot

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

Evaluate:If f(a-x)=f(x), then show that int_0^axf(x)dx=a/2int_0^af(x)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

Prove that int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a