Home
Class 11
MATHS
If A + B + C = 2pi, then prove that cos^...

If `A + B + C = 2pi,` then prove that `cos^2 B + cos^2 C - sin^2 A = 2 cos A cos B cos C`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=2 pi, then prove that cos^(2)B+cos^(2)C-sin^(2)A=2cos A cos B cos C

If A+B+C=0 , then prove that cos ^(2)A+ cos ^(2) B + cos ^(2) C =1+2 cos A cos B cos C

If A + B + C =pi , prove that : cos 2A + cos 2B + cos 2C = -1-4 cos A cos B cos C .

If A + B + C =pi , prove that : cos 2A + cos 2B -cos 2C= 1-4sin A sin B cos C .

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A + B + C =pi , prove that : cos 2A - cos 2B + cos 2C= 1-4 sin A cos B sin C .

If A+B+C=pi prove that cos^(2) A+cos^(2) B+cos^(2) C=1 - 2cos A cos B cos C .

If A + B + C =180^@ , prove that : cos^2 A+ cos^2 B-cos^2 C= 1-2 sin A sin B cos C .

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .

If A + B + C =180^@ , prove that : cos^2 A- cos^2 B-cos^2 C=2 cos A sin B sinC -1 .