Home
Class 10
MATHS
a/(a x-1)+b/(b x-1)=a+b , x!=1/a ,1/b...

`a/(a x-1)+b/(b x-1)=a+b , x!=1/a ,1/b`

Promotional Banner

Similar Questions

Explore conceptually related problems

(a)/(ax-1)+(b)/(bx-1)=a+b,x!=(1)/(a),(1)/(b)

If x + (1)/(x) = a and x - (1)/(x) = b , then a^(2) - b^(2) = "_______" .

If A =(x+1)/(x-1) and B = (x-1)/(x+1) , then A + B is:

If (log)_3x=a and (log)_7x=b , then which of the following is equal to (log)_(21)x ? a b (b) (a b)/(a^(-1)+b^(-1)) 1/(a+b) (d) 1/(a^(-1)+b^(-1))

Solve for 'x' : (1)/(a+b+x)=(1)/(a)+(1)/(b)+(1)/(x) " " a != 0, b!=0, x !=0

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

Solve for x : (1)/(a + b + x) = (1)/(a) + (1)/(b) + (1)/(x) , a ne b ne 0 , x ne 0 , x ne -(a + b)