Home
Class 11
MATHS
Prove that (a^2sin(B-C))/(sinb+sinC)+(b^...

Prove that `(a^2sin(B-C))/(sinb+sinC)+(b^2"sin"(C-A))/(sinC+sinA)+(c^2"sin"(A-B))/(sinA+sinB)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+sin C)+(b^2sin(C-A))/(sinC+sin A)+(c^2sin(A-B))/(sinA+sin B)=0

In any triangle ABC, prove that (a^(2)sin(B-C))/(sin B + sinC) + (b^(2)sin(C-A))/(sinC + sinA) +(c^(2)sin(A-B))/(sinA + sinB)=0

Prove that (sin(B-C))/(sinB.sinC) + (sin(C-A))/(sinCsinA) + (sin(A-B))/(sinA.sinB) = 0

In any DeltaABC , find the value of (a^(2)sin(B-C))/(sinB+sinC)+(b^(2)sin(C-A))/(sinC+sinA)+(c^(2)sin(A-B))/(sinA+sinB)

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

In DeltaABC , prove that: (a^(2)sin(B-C))/(sinA) + (b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

sin(B-C)/(sinB*sinC)+sin(C-A)/(sinC*sinA)+(sin(A-B))/(sin A*sin B)=0

In a triangle ABC, prove that (a^2sin(B-C))/sinA+(b^2sin(C-A))/sinB+(c^2sin(A-B))/sinC=0

Prove that: (sin(A-C)+2sinA+sin(A+C)) / ("sin"("B"-"C")+2sinB+"sin"(B+C)) = (sinA)/(sinB)