Home
Class 14
MATHS
int0^oo (dx)/((x^2+4)(x^2+9)...

`int_0^oo (dx)/((x^2+4)(x^2+9)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^oo (dx)/(1+x^4) is

The value of int_0^oo (dx)/(1+x^4) is

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^x (x^2dx)/(x^4+7x^2+1) then

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^oo (x^2dx)/(x^4+7x^2+1) then find the value of u+v

Let u=int_(0)^(oo)(dx)/(x^(4)+7x^(2)+1) and v=int_(0)^(x)(x^(2)dx)/(x^(4)+7x^(2)+1) then

int_0^4(dx)/(sqrt(x^2+9)

int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx=