Home
Class 12
MATHS
" If \begin{vmatrix} -a^2 & ab & ac\\ ab...

" If \begin{vmatrix} -a^2 & ab & ac\\ ab & -b^2 & bc\\ ac & bc & -c^2 \end{vmatrix}=1 then the value of `a^(2)b^(2)c^(2)`is

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |-a^2 ab ac ba -b^2 bc ac bc c^2| =4a^2b^2c^2 .

If |(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|=lamdaa^2b^2c^2 then the value of lamda is :

if [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=lambda a^2b^2c^2 then find the value of lambda

If ∣ -a a^2 ab ac ab -b^2 bc ac bc -c^2 | = ka^2b^2c^2 , then k is equal to

Find the value of det[[1,a,a^(2)-bc1,b,b^(2)-ac1,c,c^(2)-ab]]

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is

|(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))|=

If a,b and c are in H.P.,then the value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is

If |{:(-a^2," "ab," "ac),(" "ab,-b^2," "bc),(" "ac," "bc,-c^2):}|=lambdaa^2b^2c^2, then find the value of lambda