Home
Class 12
MATHS
यदि y=tan x + sec x, तो सिद्ध कीजिये कि ...

यदि `y=tan x + sec x`, तो सिद्ध कीजिये कि `(d^(2)y)/(dx^(2))=("cos x")/((1-sin c)^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if y = tan x + sec x, prove that (d ^ (2) y) / (dx ^ (2)) = (cos x) / ((1-sin x) ^ (2))

If y=tan x+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

If y=tan X+sec x, prove that (d^(2)y)/(dx^(2))=(cos x)/((1-sin x)^(2))

If y = tan x + sec x , prove that (d^2y)/(dx^2) = (cosx)/((1-sinx)^2)

If y=sec x -tan x ,then (d^(2)y)/(dx^(2)) =

y=tan x+sec x. Prove that (d^2y)/(dx^2)=cosx/((1+sinx)^2 .

If y=e^(-x)cos x, show that (d^(2)y)/(dx^(2))=2e^(-1)sin x

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

(dy)/(dx)+(y)/(2)sec x=(tan x)/(2y)