Home
Class 12
MATHS
If a,b,c,d………are in G.P., then show that...

If a,b,c,d………are in G.P., then show that `(a+b)^2, (b+c)^2, (c+d)^2` are in G.P.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a, b, c and d are in G.P., show that, (a-b)^(2), (b-c)^(2), (c-d)^(2) are in G.P.

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + d^(2)) are in G.P.

If a, b, c , d are in G.P. , then shown that (i) (a + b)^(2) , (b +c)^(2), (c + d)^(2) are in G.P. (ii) (1)/(a^(2) + b^(2)), (1)/(b^(2) +c^(2)), (1)/(c^(2) + a^(2)) are in G.P.

If a,b,c,d are in G.P then show that (b-c)^2+(c-a)^2+(d-b)^2=(a-d)^2 .

If a ,b ,c ,d are in G.P. prove that: (a^2+b^2),(b^2+c^2),(c^2+d^2) are in G.P. (a^2-b^2),(b^2-c^2),(c^2-d^2) are in G.P. 1/(a^2+b^2),1/(b^2+c^2),1/(c^2+d^2) are in G.P.

If a,b,c,d are in G.P., then prove that: (b-c)^2 + (c-a)^2+(d-b)^2=(a-d)^2

If a, b, c and d are in G.P., show that, a^(2) + b^(2), b^(2) + c^(2), c^(2) + d^(2) are in G.P.

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If a,b,c,d be in G.P. show that (b-c)^2 + (c-a)^2 + (d-b)^2 = (a-d)^2 .

If a,b,c,d are in G.P.then (a^(2)-b^(2)),(b^(2)-c^(2)),(c^(2)-d^(2)) are in