Home
Class 12
MATHS
The greatest value of the function f(...

The greatest value of the function `f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x` in the interval `[-1,1]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The least value of the function f(x)=2.3^(3x)-4.(3)^(2)x+3.3^(x) in [-1,1] is

the value of the function f(x)=(x^(2)-3x+2)/(x^(2)+x-6) lies in the interval.

Find the greatest value of the function f(x)=(2)/sqrt(2x^(2)-4x+3)

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

The smallest value of the function f(x)=3|x+1|+|x|+3|x-1|+2|x-3|

The function f(x) = 2x^(3) + 3x^(2) -12 x + 1 decreases in the interval

verify mean value therem for the function f(x) = x^2 -4x -3 in the interval [1,4]

The mean value of the function f(x) = (1)/( x^2 + x) on the interval [1, 3//2] is