Home
Class 12
MATHS
If alpha and beta Are different complex ...

If `alpha and beta` Are different complex number with `|alpha|=1,` then what is `|(alpha- beta)/(1-alpha beta)|` equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are different complex numbers with |beta| =1 , then |(beta - alpha)/(1 - baralpha beta)| is equal to

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta-alpha)/(1-baralpha beta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1 , then find |(beta -alpha)/(1-baralphabeta)|

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .