Home
Class 12
MATHS
f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) t...

`f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x)` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1-x^(2))+sqrt(1-x^(2)))}=alpha, then prove that x^(2)=sin2 alpha

If f(x)=(sin^(-1)x)/(sqrt(1-x^(2))),then(1-x^(2))f'(x)-xf(x)=

The minimum value of the function f(x)=(sin x)/(sqrt(1-cos^(2)x))+(cos x)/(sqrt(1-sin^(2)x))+(tan x)/(sqrt(sec^(2)x-1))+(cot x)/(sqrt(csc^(2)x-1))

If "tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha , then prove that x^(2) =sin 2alpha .

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=alpha" then prove that "x^(2)=sin2alpha.

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=theta , then prove that, sin 2 theta=x^(2) .

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is

The domain of definition of the function f(x)=sqrt(3-2^(x)-2^(1-x))+sqrt(sin^(-1)x) is