Home
Class 12
MATHS
A straight line through the origin O me...

A straight line through the origin `O` meets the parallel lines `4x+2y=9` and `2x+y+6=0` at points `P` and `Q` respectively. Then the point `O` divides the segement `P Q` in the ratio (1) `1:2` (2) `3:4` (3) `2:1` (4) `4:3`

Promotional Banner

Similar Questions

Explore conceptually related problems

A straight line through the origin O meets the parallel lines 4x + 2y = 9 and 2x + y+ 6=0 at points P and Q respectively. Then the point O divides the segment PQ in the ratio :

A straight line through the origin O meets the parallel lines 4x+2y=9 and 2x+y+6=0 at points P and Q respectively. Then the point O divides the segment PQ in the ratio :

A straight line through the origin O meets the parallel lines 4x+2y=9 and 2x+y+6=0 at points P and Q respectively. Then the point O divides the segment PQ in the ratio

A straight line through the origin O meets the parallel lines 4x+2y=9 and 2x+y+6=0 at points P and Q respectively. Then the point O divides the segment PQ in the ratio

A straight line through the origin 'O' meets the parallel lines 4x +2y= 9 and 2x +y=-6 at points P and Q respectively. Then the point 'O' divides the segment PQ in the ratio

A straight line through the origin 'O' meets the parallel lines 4x +2y= 9 and 2x +y=-6 at points P and Q respectively. Then the point 'O' divides the segment PQ in the ratio

A straight line through the origin 'O' meets the parallel lines 4x +2y= 9 and 2x +y=-6 at points P and Q respectively. Then the point 'O' divides the segment PQ in the ratio : (A) 1:2 (B) 3:2 (C) 2:1 D) 4:3

A straight line through the origin 'O' meets the parallel lines 4x+2y=9 and 2x+y=-6 at points P and Q respectively.Then the point 'divides the segment PQ in the ratio

A straight line through the origin o meets the parallel lines 4x+2y= 9 and 2x +y+ 6=0 points P and Q respectively. Then the point o divides the segment PQ in the ratio: : (A) 1:2 (B) 3:2 (C) 2:1 D) 4:3