Home
Class 11
MATHS
tan A=a tan B,sin A=b sin B rArr(b^(2)-1...

tan A=a tan B,sin A=b sin B rArr(b^(2)-1)/(a^(2)-1)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin A=a cos B and cos A=b sin B then (a^(2)-1)tan^(2)A+(1-b^(2))tan^(2)B is equal to

If A + B = 90^(@) , prove that sqrt((tan A tan B + tan A cot B)/(sin A sec B ) - (sin^(2) B)/(cos^(2)A)) = tan A .

If A+B=90^(0), prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

If A+B=90^(@); prove that sqrt((tan A tan B+tan A cot B)/(sin A sec B)-(sin^(2)B)/(cos^(2)A))=tan A

If tan A=n tan B and sin A=m sin B, prove that cos^(2)A=(m^(2)-1)/(n^(2)-1)

If A+B is 90^(@), then (tan A*tan B+tan A*cot B)/(sin A*sec B)-(sin^(2)B)/(cos^(2)A) is equal to:

If tan A = n tan B and sin A = m sin B , show that cos^(2)A= (m^(2)-1)/(n^(2)-1) .

if tan A=k tan B show that sin(A+B)=((k+1)/(k-1))sin(A-B)

A+B=C and tan A=k tan B, then prove that sin(A-B)=(k-1)/(k+1)sin C

If sin A=a cos B and cosA=b sinB then, (a^2 - 1) tan^2 A+(1 -b^2)tan^2B is equal to