Home
Class 11
PHYSICS
For conservative of U w.r.t. x keeping y...

For conservative of U w.r.t. x keeping y and z constant and so on.
`{:(,"Column-I",,,"Column-II"),((A),"For" U=x^(2) yz"," at (5, 0,0),,(P),F_(x)=0),((B),"For" U=x^(2)+yz at (5, 0, 0),,(Q),F_(y)=0),((C),"For" U=x^(2)(y+z) at (5, 0, 0),,(R),F_(z)=0),((D),"For" U=x^(2)y+z at (5, 0,0),,(S),U=0):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find derivative of u(x) u( x )= [ ln( 1+ sin2x ), if x>0 0, if x≤0

|{:(" "0," "x,y),(-x," "0,z),(-y,-z,0):}|=0

" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)),(xz-y^(2),,xy-z^(2),,yz-x^(2)),(xy-z^(2),,yz-x^(2),,zx-y^(2)):}|=|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}| then

" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)),(xz-y^(2),,xy-z^(2),,yz-x^(2)),(xy-z^(2),,yz-x^(2),,zx-y^(2)):}|=|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}| then

" if " |{:(yz-x^(2),,zx-y^(2),,xy-z^(2)),(xz-y^(2),,xy-z^(2),,yz-x^(2)),(xy-z^(2),,yz-x^(2),,zx-y^(2)):}|=|{:(r^(2),,u^(2),,u^(2)),(u^(2),,r^(2),,u^(2)),(u^(2),,u^(2),,r^(2)):}| then

If f(x+y+z)=f(x)f(y)f(z)ne0 , for all x, y, z and f(2)=4,f'(0)=3 , find f'(2) .

If [(x-y, z),(2x-y, w)] = [(-1,4),(0,5)] , find x , y , z and w.

Let A be a 3xx3 matrix and S={((x),(y),(z))x,y,z, in R} Define f: S rarr S by f((x),(y),(z))=A((x),(y),(z)) Suppose f((x),(y),(z))=((0),(0),(0)) implies x=y=z=0 Then

If f(x+y+z)=f(x) f(y) f(z) ne 0 for all x,y,z and f(2)=5, f'(0)=2, find f'(2).