Home
Class 11
MATHS
For any integer k , let alphak=cos((kpi...

For any integer `k ,` let `alpha_k=cos((kpi)/7)+isin((kpi)/7),w h e r e i=sqrt(-1)dot` Value of the expression `(sum_(k=1)^(12)|alpha_(k+1)-alpha_k|)/(sum_(k=1)^3|alpha_(4k-1)-alpha_(4k-2)|)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For any integer K , let alpha_(k)=cos((kpi)/(7))+isin((kpi)/(7))," where " i=sqrt(-1) The value of the expression (sum_(k=1)^(12)|alpha_(k+1)-alpha_(k)|)/(sum_(k=1)^(3)|alpha_(4k-1)-alpha_(4k-2)|)

For any integer k, let alpha_(k)=cos((k pi)/(7))+i sin((k pi)/(7)), wherei =sqrt(-1) Value of the expression (sum_(k=1)^(12)| alpha_(k+1)-alpha_(k)|)/(sum_(k=1)^(3)| alpha_(4k-1)-alpha_(4k-2)|) is

For any integer k , let alpha_k=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt(-1)dot Value of the expression (sumk=1 12|alpha_(k+1)-alpha_k|)/(sumk=1 3|alpha_(4k-1)-alpha_(4k-2)|) is

For any integer k , let alpha_k=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt(-1)dot Value of the expression (sumk=1 to 12|alpha_(k+1)-alpha_k|)/(sumk=1 to 3|alpha_(4k-1)-alpha_(4k-2)|) is

For any integer k let alpha_k=cos((kpi)/7)+isin((kpi)/7) where i=sqrt(-1) the value of expression (sum_(k=1)^(12) abs(alpha_(k+1)-alpha_k))/(sum_(k=1)^3 abs((alpha_(4k-1)-alpha_(4k-2))

Let z_(k) = cos((2kpi)/(10)) -isin ((2kpi)/(10)), k = 1,2,…..,9

sum_(k=1)^6[sin((2kpi)/(7))-icos((2kpi)/(7))]=

Let z_(k)=cos((2kpi)/(10))+isin((2kpi)/(10)) ,k=1,2,…,9. Then match the column