Home
Class 12
MATHS
If F(x)=[("cos"x,-sin x,0),(sin x,cos x,...

If `F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)]` and `G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)]`, then `[F(x) G(y)]^(-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If F(x) =[(cos x, -sin x,0),(sin x,cos x,0),(0,0,1)] show that F(x)F(y)=F(x+y)

Inverse of f(x) = [(cos x , sin x, 0),(-sin x, cos x, 0),(0,0,1)] is

If A= [[cos x,sin x,0],[-sin x,cos x,0],[0,0,1]]=f(x) then A^-1=

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

If f(x)=[[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]] , show that f(x).f(y)=f(x+y)

Let F (x) = [{:(cos x , -sin x , 0),(sin x , cos x , 0),(0 , 0, 1):}] , then

find the value for x F(x)=|[cos x,-sin x,0],[sin x,cos x,0],[0,0,1]|

If F (x) = [[cos x,-sin x,0],[sin x, cos x, 0],[0,0,1], then show that F(x) F(y)= F (x+y).