Home
Class 12
MATHS
Find the cosine of the angel between the...

Find the cosine of the angel between the planes` vecr.(2veci-3vecj-6veck)=7` and `vecr.(6veci+2vecj-9veck)=5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the cosine of the angle between the planes vecr.(2veci-3vecj-6veck)=7 and vecr.(6veci+2vecj-9veck)=5

Find the angle between planes vecr.(veci+vecj)=1 and vecr.(veci+veck)=3 .

Find the angle between planes vecr.(veci+vecj)=1 and vecr.(veci+veck)=3 .

Find the vector equation of the line passing through (1,2,3) and parallel to the planes vecr.(veci-vecj+2veck)=5 and vecr.(3veci+vecj+veck)=6 .

If a vector vecr of magnitude 3sqrt6 is directed along the bisector of the angle between the vectors veca =7veci-4vecj -4veck and vecb = -2veci- vecj+ 2veck , then vecr is equal to

Find the value of lambda so that the plane vecr. (veci + 2vecj + 3veck) = 7 and vecr.(lambdaveci + 2vecj - 7veck) = 26 are perependicular to each other.

The angle between the two vectors- 2veci+3vecj+veck and veci+3vecj-4veck is.

Find the angle between the vectors 3veci-4vecj+veck and veci-3vecj+4veck .

Find the angle between the line vecr=veci+vecj+3veck+lambda(2veci+vecj-veck) and the plane vecr.(veci+vecj)=1

find the shortest distance between the skew lines. vecr=(2veci-vecj-veck)+t(veci-2vecj+3veck) and vecr=(veci-2vecj-veck)+s(2veci-2vecj-3veck)