Home
Class 12
MATHS
In Q.no. 88, if z be any point in A frow...

In Q.no. 88, if z be any point in `A frown B frown C` and `omega` be any point satisfying `|omega-2-i| lt 3`. Then, `|z|-|omega|+3` lies between

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A,B and C be three sets of complex numbers as defined below: {:(,A={z:Im(z) ge 1}),(,B={z:abs(z-2-i)=3}),(,C={z:Re(1-i)z)=3sqrt(2)"where" i=sqrt(-1)):} Let z be any point in A cap B cap C " and " omega be any point satisfying abs(omega-2-i) lt 3 . Then, abs(z)-abs(omega)+3 lies between

Let A,B,C be three sets of complex number as defined below A={z:lm (z) ge 1} B={z:|z-2-i|=3} C={z:Re((1-i)z)=sqrt(2)} Let z be any point in A cap B cap C and let w be any point satisfying |w-2-i|lt 3 Then |z|-|w|+3 lies between

If z satisfies |z-1| lt |z +3| " then " omega = 2 z + 3 -i satisfies

If z satisfies |z-1| lt |z +3| " then " omega = 2 z + 3 -i satisfies

If omega=z/(z-1/3i) and |omega|=1 then z lies on

If omega=(z)/(z-(i)(3)) and |omega|=1 , the z lies on

If z satisfies |z+1| lt |z-2| , then w=3z+2+i

If omega=(z)/(z-(1/3)i)" and "|omega|=1 , then z lies on

If |w|=1 , then the set of points z=w+(1)/(w) is contained in or equal to the set of points z satisfying