Simplify. (i) `(x^2-5) (x+5)+25` (ii) `(a^2+5) (b^3+3)+5` (iii) `(t+s^2) (t^2-s)` (iv) `(a+b)(c-d)+(9a-b)(c+d)+2(ac+bd)` (v) `(x+y)(2x+y)+(x+2y)+(x+2y)(x-y)` (vi) `(x+y)(x^2-xy+y^2)` (vii) `(1.5x-4y)(1.5x+4y+3)-4.5x+12y` (viii) `(a+b+c)(a+b-c)`
Simplify. (i) `(x^2-5) (x+5)+25` (ii) `(a^2+5) (b^3+3)+5` (iii) `(t+s^2) (t^2-s)` (iv) `(a+b)(c-d)+(9a-b)(c+d)+2(ac+bd)` (v) `(x+y)(2x+y)+(x+2y)+(x+2y)(x-y)` (vi) `(x+y)(x^2-xy+y^2)` (vii) `(1.5x-4y)(1.5x+4y+3)-4.5x+12y` (viii) `(a+b+c)(a+b-c)`
Text Solution
AI Generated Solution
The correct Answer is:
Let's simplify each part step by step:
### (i) Simplify \( (x^2 - 5)(x + 5) + 25 \)
1. **Distribute \( (x^2 - 5) \) with \( (x + 5) \)**:
\[
(x^2 - 5)(x + 5) = x^2 \cdot x + x^2 \cdot 5 - 5 \cdot x - 5 \cdot 5 = x^3 + 5x^2 - 5x - 25
\]
2. **Add 25**:
\[
x^3 + 5x^2 - 5x - 25 + 25 = x^3 + 5x^2 - 5x
\]
**Final Answer**: \( x^3 + 5x^2 - 5x \)
---
### (ii) Simplify \( (a^2 + 5)(b^3 + 3) + 5 \)
1. **Distribute \( (a^2 + 5) \) with \( (b^3 + 3) \)**:
\[
(a^2 + 5)(b^3 + 3) = a^2 \cdot b^3 + a^2 \cdot 3 + 5 \cdot b^3 + 5 \cdot 3 = a^2b^3 + 3a^2 + 5b^3 + 15
\]
2. **Add 5**:
\[
a^2b^3 + 3a^2 + 5b^3 + 15 + 5 = a^2b^3 + 3a^2 + 5b^3 + 20
\]
**Final Answer**: \( a^2b^3 + 3a^2 + 5b^3 + 20 \)
---
### (iii) Simplify \( (t + s^2)(t^2 - s) \)
1. **Distribute \( (t + s^2) \) with \( (t^2 - s) \)**:
\[
(t + s^2)(t^2 - s) = t \cdot t^2 - t \cdot s + s^2 \cdot t^2 - s^2 \cdot s = t^3 - ts + s^2t^2 - s^3
\]
**Final Answer**: \( t^3 - ts + s^2t^2 - s^3 \)
---
### (iv) Simplify \( (a + b)(c - d) + (9a - b)(c + d) + 2(ac + bd) \)
1. **Distribute each term**:
\[
(a + b)(c - d) = ac - ad + bc - bd
\]
\[
(9a - b)(c + d) = 9ac + 9ad - bc - bd
\]
\[
2(ac + bd) = 2ac + 2bd
\]
2. **Combine all parts**:
\[
(ac - ad + bc - bd) + (9ac + 9ad - bc - bd) + (2ac + 2bd)
\]
Combine like terms:
\[
(ac + 9ac + 2ac) + (-ad + 9ad) + (bc - bc) + (-bd - bd + 2bd) = 12ac + 8ad - 2bd
\]
**Final Answer**: \( 12ac + 8ad - 2bd \)
---
### (v) Simplify \( (x + y)(2x + y) + (x + 2y) + (x + 2y)(x - y) \)
1. **Distribute each term**:
\[
(x + y)(2x + y) = 2x^2 + xy + 2xy + y^2 = 2x^2 + 3xy + y^2
\]
\[
(x + 2y)(x - y) = x^2 - xy + 2xy - 2y^2 = x^2 + xy - 2y^2
\]
2. **Combine all parts**:
\[
(2x^2 + 3xy + y^2) + (x + 2y) + (x^2 + xy - 2y^2)
\]
Combine like terms:
\[
(2x^2 + x^2) + (3xy + xy) + (y^2 - 2y^2) + x + 2y = 3x^2 + 4xy - y^2 + x + 2y
\]
**Final Answer**: \( 3x^2 + 4xy - y^2 + x + 2y \)
---
### (vi) Simplify \( (x + y)(x^2 - xy + y^2) \)
1. **Distribute \( (x + y) \)**:
\[
(x + y)(x^2 - xy + y^2) = x \cdot x^2 - x \cdot xy + x \cdot y^2 + y \cdot x^2 - y \cdot xy + y \cdot y^2
\]
Combine like terms:
\[
x^3 - x^2y + xy^2 + yx^2 - y^2x + y^3 = x^3 + y^3
\]
**Final Answer**: \( x^3 + y^3 \)
---
### (vii) Simplify \( (1.5x - 4y)(1.5x + 4y + 3) - 4.5x + 12y \)
1. **Distribute \( (1.5x - 4y) \)**:
\[
(1.5x - 4y)(1.5x + 4y + 3) = 1.5x \cdot 1.5x + 1.5x \cdot 4y + 1.5x \cdot 3 - 4y \cdot 1.5x - 4y \cdot 4y - 4y \cdot 3
\]
Simplifying gives:
\[
2.25x^2 + 6xy + 4.5x - 6xy - 16y^2 - 12y
\]
2. **Combine with \( -4.5x + 12y \)**:
\[
2.25x^2 - 16y^2 + (4.5x - 4.5x) + (-12y + 12y) = 2.25x^2 - 16y^2
\]
**Final Answer**: \( 2.25x^2 - 16y^2 \)
---
### (viii) Simplify \( (a + b + c)(a + b - c) \)
1. **Distribute \( (a + b + c) \)**:
\[
(a + b + c)(a + b - c) = a(a + b - c) + b(a + b - c) + c(a + b - c)
\]
This expands to:
\[
a^2 + ab - ac + ab + b^2 - bc + ac + bc - c^2
\]
Combine like terms:
\[
a^2 + 2ab + b^2 - c^2
\]
**Final Answer**: \( a^2 + 2ab + b^2 - c^2 \)
---
Let's simplify each part step by step:
### (i) Simplify \( (x^2 - 5)(x + 5) + 25 \)
1. **Distribute \( (x^2 - 5) \) with \( (x + 5) \)**:
\[
(x^2 - 5)(x + 5) = x^2 \cdot x + x^2 \cdot 5 - 5 \cdot x - 5 \cdot 5 = x^3 + 5x^2 - 5x - 25
\]
...
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Simplify: (2x + 5y)(3x + 4y) - (7x + 3y)(2x + y)
Expand: (i) (8a + 3b)^(2) (ii) (7x + 2y)^(2) (iii) (5x + 11)^(2) (iv) ((a)/(2) + (2)/(a))^(2) (v) ((3x)/(4) + (2y)/(9))^(2) (vi) (9x - 10)^(2) (vii) (x^(2) y - yz^(2))^(2) (viii) ((x)/(y) - (y)/(x))^(2) (ix) (3m - (4)/(5) n)^(2)
Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))
Simplify : (i) (5x - 9y) - (-7x + y) (ii) (x^(2) -x) -(1)/(2)(x - 3 + 3x^(2)) (iii) [7 - 2x + 5y - (x -y)]-(5x + 3y -7) (iv) ((1)/(3)y^(2) - (4)/(7)y + 5) - ((2)/(7)y - (2)/(3)y^(2) + 2) - ((1)/(7)y - 3 + 2y^(2))
Subtract: (i) -8xy from 7xy (ii) x^(2) from -3x^(2) (iii) (x - y) from (4y - 5x) (iv) (a^(2) + b^(2) - 2ab) from (a^(2) + b^(2) + 2ab) (v) (x^(2) - y^(2)) from (2x^(2) - 3y^(2) + 6xy) (vi) (x -y + 3z) from (2z - x - 3y)
Find each of the following products: (i) (x - 4)(x - 4) (ii) (2x - 3y)(2x - 3y) (iii) ((3)/(4) x - (5)/(6) y) ((3)/(4)x - (5)/(6) y) (iv) (x - (3)/(x)) (x - (3)/(x)) (v) ((1)/(3) x^(2) - 9) ((1)/(3) x^(2) - 9) (vi) ((1)/(2) y^(2) - (1)/(3) y) ((1)/(2) y^(2) - (1)/(3) y)
Find each of the following products: (i) (x + 6) (x + 6) (ii) (4x + 5y) (4x + 5y) (iii) (7a + 9b) (7a + 9b) (iv) ((2)/(3) x + (4)/(5)y) ((2)/(3) x + (4)/(5) y) (v) (x^(2) + 7)(x^(2) + 7) (vi) ((5)/(6) a^(2) + 2) ((5)/(6) a^(2) + 2)
Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)
{:("Column" A ,, "Column" B), ((3x^(2) - 5)- (2x^(2) - 5 + y^(2)) ,, (a) x^(2) + xy + y^(2)) , (9x^(2) - 16y^(2) ,, (b) 2) , ((x^(3) - y^(3))/(x-y) ,, (c) (9x + 16y) (9x - 16y)) , ("The degree of " (x + 2) (x+3) ,, (d) x^(2) - y^(2)) , (,, (e) 1) , (,, (f) (3x + 4y) (3x - 4y)):}