Home
Class 12
MATHS
If ax + by + c = 0 is the polar of (1,1)...

If `ax + by + c = 0` is the polar of `(1,1)` with respect to the circle `x^(2) + y^(2) - 2x + 2y `
`+ 1 = 0` and H. C. F. of a, b, c is equal to
one then find `a^(2) + b^(2) + c^(2) .`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Show that the circles x^(2) +y^(2) + 2ax + c=0 and x ^(2) + y^(2) + 2by + c=0 to touch each other if (1)/(a^(2)) + (1)/( b^(2)) = (1)/( c )

If the circles x ^2 + y ^2 + 2ax + c = 0 and x ^2 + y ^2 +2by + c = 0 touch each other, prove that 1/a ^2 + 1 b ^2 = 1/c

If circles x^(2) + y^(2) + 2gx + 2fy + c = 0 and x^(2) + y^(2) + 2x + 2y + 1 = 0 are orthogonal , then 2g + 2f - c =

The coordinates of the centre of the circle 2x^(2)+2y^(2) + ax + by + c= 0 are (3, - 4), find a and b.

Show that the circles x^2 +y^2 + 2ax + c = 0 and x^2 + y^2 + 2by + c = 0 touch each other if 1//a^2 + 1//b^2 = 1//c.