Home
Class 12
MATHS
( tan^(3) theta )/( 1+ tan^(2) theta )+ ...

`( tan^(3) theta )/( 1+ tan^(2) theta )+ ( cot^(3) theta )/( 1+ cot^(2) theta )= `

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove each of the following identities : (tan^(2) theta)/((1+ tan^(2) theta)) + (cot^(2) theta)/((1+ cot^(2) theta)) =1

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

Prove that : (tan^(2)theta)/(1+tan^(2)theta)+(cot^(2)theta)/(1+cot^(2)theta)=1

(tan theta)/((1+tan^(2)theta)^(2))+(cot theta)/((1+cot^(2)theta)^(2))=sin theta cos theta

The value of cosec ^(2) theta cot ^(2) theta - sec ^(2) theta tan ^(2) theta -(cot ^(2) theta- tan ^(2) theta) (sec ^(2) theta cosec ^(2) theta -1) is-

What is (1+ tan^(2) theta)/(1+cot^(2) theta) -((1-tan theta)/(1-cot theta ))^(2) equal to ?

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

(sin ^(3) theta - cos^(3) theta)/(sin theta - cos theta) - (cos theta)/(sqrt(1 + cot^(2)theta))-2 tan theta cot theta = - 1 , if

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if