Home
Class 11
MATHS
lim(x rarr2)(x-2)/(log(a)(x-1))...

lim_(x rarr2)(x-2)/(log_(a)(x-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(x-2)/(x+1)=

The limit lim_(x rarr2)(log_(e)(x-2))/(log_(6)(e^(x)-e^(2))) equals

STATEMENT-1: lim_(x rarr oo)(log[x])/(sqrt(([x])/(sec^(2)-1)))=0 STATEMENT-2: lim_(x rarr0)(sqrt(sec^(2)-1))/(x) does not exist.STATEMENT-3: lim_(x rarr2)(x-1)^((1)/(x-2))=1

lim_(x rarr0)(sin x)/(log_(e)(1+x)^((1)/(2)))

Evaluate: lim_(x rarr 0) (sinx)/(log_(e)(1+x)^(1/2))

Evaluate :lim_(x rarr1)(x^(2)+x log_(e)x-log_(e)x-1)/((x^(2)-1))

Use formula lim_(x rarr0)(a^(x)-1)/(x)=log(a) to find lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)

lim_(x rarr2)(log(2x-3))/(2(x-2))

If L=lim_(x rarr oo){x-x^(2)log_(e)(1+(1)/(x))}, then the value of 8L is