Home
Class 14
MATHS
y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(...

y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!)

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: The coefficient of x^(n) is (1+x+(x^(2))/(2!)+(x^(3))/(3!)+...+(x^(n))/(n!))^(3) is (3^(n))/(n!) Statement 2: The coefficient of x^(n)ine^(3x)is(3^(n))/(n!)

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+ . . .+(x^(n))/(n!) , prove that (dy)/(dx)+(x^(n))/(n!)=y

If y = 1 + x + (x^(2))/(2!)+(x^(3))/(3!)+(x^(4))/(4!)+* * * +(x^(n))/(n!) prove that (dy)/(dx) + (x^(n))/(n!)=y*

If y=1+x+(x^(2))/(2!)+(x^(2))/(3!)+……+(x^(n))/(n!) then (dy)/(dx) =…………

If y=1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)++(x^(n))/(n!), show that (dy)/(dx)-y+(x^(n))/(n!)=0

The coefficient of x^(n) in (1-(x)/(1!)+(x^(2))/(2!)-(x^(3))/(3!)+...+((-1)^(n)x^(n))/(n!))^(2) is equal to

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.