Home
Class 9
MATHS
If x=cy+bz,y=cx+az,z=bx+ay, the value of...

If `x=cy+bz,y=cx+az,z=bx+ay`, the value of `a^2+b^2+c^2-1` is (A) abc (B) -abc (C) 2abc (D) -2abc

Promotional Banner

Similar Questions

Explore conceptually related problems

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

If x = cy + bz, y = az + cx , z =bx + ay, then prove that x^2/(1-a^2)= y^2/(1-b^2)

If x@+y^(2)+z^(2)!=0,x=cy+bz,y=az+cx, and z=bx+ay, then a^(2)+b^(2)+c^(2)+2abc=

If x^2+y^2+z^2 ne0, x=cy+bz,y=az+cxandz=bx+ay" then "a^2+b^2+c^2+2abc=

Given x = cy+bz, y = az + cx, z = b x + ay where, x,y,z are not all zero prove that a^2+b^2 +c^2 + 2 a b c = 1.

If x = cy + bz, y = az + cx,z = bx + ay where x,y,z are not all zero, prove that a^2 + b^2 + c^2 + 2ab = 1.