Home
Class 12
MATHS
If alpha ,beta, gamma are the roots of ...

If `alpha ,beta, gamma ` are the roots of ` x^3-3ax+b=0`
prove that `sum (alpha-beta)(alpha-gamma)=9a`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^3+ax+b =0, then the value of alpha^3+beta^3+gamma^3

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha , beta , gamma are the roots of x^3+px+q=0 , then the value of the determine |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| is

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

If alpha,beta,gamma are the roots of x^(3)+2x^(2)+3x+8=0 then (alpha+beta)(beta+gamma)(gamma+alpha)=

If alpha, beta, gamma are the roots of 9x^3 - 7x + 6 = 0 , then alpha beta gamma is …………

If alpha, beta, gamma are roots of x^(3) + ax^(2) + bx + c = 0 then sum alpha^(2) beta =

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =