Home
Class 12
MATHS
Evaluate '|[sqrt(6), sqrt(5)], [sqrt(20)...

Evaluate '|[sqrt(6), sqrt(5)], [sqrt(20), sqrt(24)]|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant of the given matrix \(\begin{bmatrix} \sqrt{6} & \sqrt{5} \\ \sqrt{20} & \sqrt{24} \end{bmatrix}\), we can follow these steps: ### Step 1: Write down the determinant formula The determinant of a \(2 \times 2\) matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is given by the formula: \[ \text{det} = ad - bc \] In our case, we have: - \(a = \sqrt{6}\) - \(b = \sqrt{5}\) - \(c = \sqrt{20}\) - \(d = \sqrt{24}\) ### Step 2: Substitute the values into the formula Now, substituting the values into the determinant formula: \[ \text{det} = (\sqrt{6})(\sqrt{24}) - (\sqrt{5})(\sqrt{20}) \] ### Step 3: Simplify the terms We can simplify the terms: - \(\sqrt{6} \cdot \sqrt{24} = \sqrt{6 \cdot 24} = \sqrt{144} = 12\) - \(\sqrt{5} \cdot \sqrt{20} = \sqrt{5 \cdot 20} = \sqrt{100} = 10\) ### Step 4: Calculate the determinant Now substituting back into the determinant: \[ \text{det} = 12 - 10 = 2 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{2} \]

To evaluate the determinant of the given matrix \(\begin{bmatrix} \sqrt{6} & \sqrt{5} \\ \sqrt{20} & \sqrt{24} \end{bmatrix}\), we can follow these steps: ### Step 1: Write down the determinant formula The determinant of a \(2 \times 2\) matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is given by the formula: \[ \text{det} = ad - bc \] In our case, we have: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate |[sqrt(3), sqrt(5)],[-sqrt(5), 3sqrt(3)]|

Evaluate : sqrt(6)/( sqrt(2) + sqrt(3) )

Evaluate (1+sqrt(6))/(sqrt(5)+sqrt(3))

8sqrt(5)+sqrt(20)-sqrt(125)

Evaluate : sqrt(5)/ (sqrt(7) - sqrt(5)

Evaluate : sqrt(5) + sqrt(5) + sqrt(5) + sqrt (5)

Evaluate : sqrt(5)times sqrt(6)

Evaluate (sqrt(7)-sqrt(5))/ (sqrt(7)-sqrt(5))

Evaluate ( sqrt(24) + sqrt(6) )/( sqrt(24) - sqrt(6))

Evaluate : ( sqrt(7) + sqrt(5) ) ( sqrt(5) - sqrt(7) )