Home
Class 12
MATHS
If y=sin^(-1){(sqrt(1+x)-sqrt(1-x))/(2)}...

If `y=sin^(-1){(sqrt(1+x)-sqrt(1-x))/(2)}`, find `(dy)/(dx).`

A

`(1)/(2sqrt(1-x^(2)))`

B

`(1)/(sqrt(1-x^(2)))`

C

`-(1)/(2sqrt(1-x^(2)))`

D

`-(1)/(sqrt(1-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)\), we will use the chain rule and implicit differentiation. Let's go through the steps: ### Step 1: Define the function We start with the function: \[ y = \sin^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right) \] ### Step 2: Differentiate both sides To find \(\frac{dy}{dx}\), we differentiate both sides with respect to \(x\): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)^2}} \cdot \frac{d}{dx}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right) \] ### Step 3: Differentiate the inner function Now we need to differentiate the inner function: \[ \frac{d}{dx}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right) = \frac{1}{2}\left(\frac{d}{dx}(\sqrt{1+x}) - \frac{d}{dx}(\sqrt{1-x})\right) \] Using the chain rule: \[ \frac{d}{dx}(\sqrt{1+x}) = \frac{1}{2\sqrt{1+x}} \quad \text{and} \quad \frac{d}{dx}(\sqrt{1-x}) = -\frac{1}{2\sqrt{1-x}} \] Thus, \[ \frac{d}{dx}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right) = \frac{1}{2}\left(\frac{1}{2\sqrt{1+x}} + \frac{1}{2\sqrt{1-x}}\right) \] This simplifies to: \[ \frac{1}{4}\left(\frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1-x}}\right) \] ### Step 4: Substitute back into the derivative Now substituting back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)^2}} \cdot \frac{1}{4}\left(\frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1-x}}\right) \] ### Step 5: Simplify the expression Next, we need to simplify \(\sqrt{1 - \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)^2}\): \[ \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)^2 = \frac{(1+x) + (1-x) - 2\sqrt{(1+x)(1-x)}}{4} = \frac{2 - 2\sqrt{(1+x)(1-x)}}{4} = \frac{1 - \sqrt{(1+x)(1-x)}}{2} \] Thus, \[ 1 - \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)^2 = 1 - \frac{1 - \sqrt{(1+x)(1-x)}}{2} = \frac{1 + \sqrt{(1+x)(1-x)}}{2} \] So, \[ \sqrt{1 - \left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)^2} = \sqrt{\frac{1 + \sqrt{(1+x)(1-x)}}{2}} \] ### Final expression for \(\frac{dy}{dx}\) Putting it all together, we have: \[ \frac{dy}{dx} = \frac{1}{4\sqrt{\frac{1 + \sqrt{(1+x)(1-x)}}{2}}} \left(\frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1-x}}\right) \]

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right)\), we will use the chain rule and implicit differentiation. Let's go through the steps: ### Step 1: Define the function We start with the function: \[ y = \sin^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10A|34 Videos
  • DIFFERENTIATION

    RS AGGARWAL|Exercise Exercise 10B|22 Videos
  • DIFFERENTIAL EQUATIONS WITH VARIABLE SEPARABLE

    RS AGGARWAL|Exercise Exercise 19B|60 Videos
  • FUNCTIONS

    RS AGGARWAL|Exercise Exercise 2D|11 Videos

Similar Questions

Explore conceptually related problems

If y=sin^(-1){(5x+12 sqrt(1-x^(2)))/(13)}, find (dy)/(dx).

y = sin^(-1) {(sqrt(1 +x) + sqrt(1 -x))/(2)} " then " (dy)/(dx) = ?

If y=sin^(-1)(x sqrt(1-x)+sqrt(x)sqrt(1-x^(2))) and (dy)/(dx)=(1)/(2sqrt(x(1-x)))+p, then p,

If y=cos^(-1){(2x-3sqrt(1-x^(2)))/(sqrt(13))}, find (dy)/(dx)

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) then find (dy)/(dx)

If y=(sin x)^(x)+sin^(-1)sqrt(1-x^(2)) then find (dy)/(dx)

If y=(x sin^(-1)x)/(sqrt(1-x^(2))), find (dy)/(dx).

RS AGGARWAL-DIFFERENTIATION-Exercise 10I
  1. If y=sin^(-1){(sqrt(1+x)-sqrt(1-x))/(2)}, find (dy)/(dx).

    Text Solution

    |

  2. If x=at^2 and y=2at then find the value of ((dy)/(dx))^2

    Text Solution

    |

  3. Find (dy)/(dx), when x=acos theta, y=bsin theta

    Text Solution

    |

  4. Find (dy)/(dx) , when x=b\ s in^2theta and y=a\ cos^2theta

    Text Solution

    |

  5. Find (dy)/(dx), when x=acos^(3)theta,y=a sin^(3)theta

    Text Solution

    |

  6. Find (dy)/(dx), if x=a(theta+sintheta), y=1(1-costheta).

    Text Solution

    |

  7. Find (dy)/(dx), when x=alogt,y=bsint

    Text Solution

    |

  8. Find (dy)/(dx), when x=(logt+cost),y=(e^(t)+sint)

    Text Solution

    |

  9. Find (dy)/(dx), when x=costheta+cos2 theta,y=sin theta+sin2theta

    Text Solution

    |

  10. Find (dy)/(dx), when x=sqrt(sin 2theta), y=sqrt(cos 2theta)

    Text Solution

    |

  11. Find (dy)/(dx), when x=a e^(theta)(sintheta-costheta),y=a e^(theta)(si...

    Text Solution

    |

  12. Find (dy)/(dx) , when x=a\ (costheta+thetasintheta) and y=a(sintheta-t...

    Text Solution

    |

  13. Find (dy)/(dx), when x=(3a t)/(a+t^2)"and"y=(3a t^2)/(1+t^2)

    Text Solution

    |

  14. Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

    Text Solution

    |

  15. Find (dy)/(dx), when x=cos^(-1)1/(sqrt(1+t^2))"and"y=sin^(-1)t/(sqrt(1...

    Text Solution

    |

  16. "If "x=3cost-2cos^(3)t,y=3sint-2sin^(3)t," show that"(dy)/(dx)=cott.

    Text Solution

    |

  17. if x=(1+lnt)/t^2 and y=(3+2lnt)/t then show that y(dy)/(dx)=2x((dy)/(d...

    Text Solution

    |

  18. Find (dy)/(dx) , when x=a(1-costheta) and y=a(theta+sintheta) at theta...

    Text Solution

    |

  19. If x=2costheta-cos2\ theta and y=2sintheta-sin2\ theta , prove that (d...

    Text Solution

    |

  20. If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t) show that dy/dx =0 at t=...

    Text Solution

    |

  21. "If "x=(2costheta-cos 2theta)and y=(2sin theta-sin 2theta)," find "((d...

    Text Solution

    |