Home
Class 12
MATHS
cos^(-1)2x...

`cos^(-1)2x`

Text Solution

AI Generated Solution

To differentiate the function \( y = \cos^{-1}(2x) \) with respect to \( x \), we will use the chain rule and the derivative of the inverse cosine function. ### Step-by-Step Solution: 1. **Identify the function**: We have \( y = \cos^{-1}(2x) \). 2. **Recall the derivative of the inverse cosine function**: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Draw the graph of y=cos^(-1)(2^(x)) .

Prove that cos^(-1){(1+x)/(2)}=(cos^(-1)x)/(2)

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

The domain of the function f(x) = cos ^(-1)((2-x)/(4)) is

If y=cos((1)/(2)cos^(-1)x)," then "(dy)/(dx)=

Solve sin^(-1)(x^(2)-2x+1)+cos^(-1)(x^(2)-x)=(pi)/2

cos^(-1){1/2x^(2)+sqrt(1+x^(2))sqrt(1-x^(2))/(4)}=cos^(-1)(x/2)-cos^(-1)x

cos^(-1)(cos^(2)x-sin^(2)x)

If x gt 1 then 1/2 cos^(-1) ((x^(2)-1) /(x^(2)+1)) = tan^(-1) _______.